24th ISSFD, Laurel, MD, JHU APL

Determination and Prediction of Orbital Parameters of the Radioastron Mission

M. Zakhvatkin $^{1}\text{, V}.$ Stepanyants $^{1}\text{, A. Tuchin}$ $^{1}\text{, Yu. Ponomarev}$ 2

¹Keldysh Institute of Applied Mathematics (KIAM) ²Astrospace Center of Lebedev Physical Institute (ASC)

May 9, 2014

Radioastron mission

Orbit

Mission

Launch date:	18 July 2011	Purpose:	VLBI observations
Perigee altitude:	1000 – 67 000 km	Bands:	P, L, C, K
Apogee distance:	up to 370 000 km	Data channel:	2x72 Mbps
Period:	8–9 days		

Orbit knowledge is required for the interferometric data correlation.

Main perturbations

Nature	Maximum, m/s ²	Average, m/s ²
Spherical harmonics	$3.8 \cdot 10^{-3}$	$3.3 \cdot 10^{-6}$
Third bodies	$2.3 \cdot 10^{-4}$	$4.1 \cdot 10^{-5}$
Direct solar radiation	$1.9 \cdot 10^{-7}$	$1.5 \cdot 10^{-7}$
Unloadings	$5.8 \cdot 10^{-8}$	$5.8 \cdot 10^{-8}$
Tides	$6.6 \cdot 10^{-8}$	$2.3 \cdot 10^{-11}$
Earth radiation	$2.1 \cdot 10^{-8}$	$1.1 \cdot 10^{-10}$

The satellite is not equipped with accelerometers.

M. Zakhvatkin (KIAM)

Unloadings of reaction wheels

An unloading consists of dozens of firings, *j*-th firing of the *i*-th unloading provides $\Delta \mathbf{v}_{ij} = \frac{\Delta m_{ij}I(\tau_{ij})}{M} \mathbf{e}_{ij}$ at t_{ij} All firings of the unloading are summed up into one impulse $\Delta \mathbf{v}_i$ applied at weighted time t_i .

Weighted time and the estimate of the impulse are as follows

$$t_i = \frac{\sum_j v_{ij} t_{ij}}{\sum_j v_{ij}} \quad \mathbf{v}_i^0 = \sum_j \mathbf{v}_{ij} (\Delta m_{ij}, \tau_{ij}, \mathbf{e}_{ij}).$$

The perturbation due to unloadings on the interval of interest is described with the set of impulses $\{\Delta \mathbf{v}_i, t_i\}$.

Direct solar radiation pressure

Decomposition of the solar radiation impacting a flat surface

$$\mathbf{F} = (1 - \alpha)\mathbf{F}_a + \alpha\mu\mathbf{F}_s + \alpha(1 - \mu)\mathbf{F}_d$$

 $\alpha \in [0,1]$ — reflectivity, $\mu \in [0,1]$ — specularity.

allows to represent net SRP force and torque as functions of parameters α_i and μ_i

$$\mathbf{F}_{SRP} = \sum_{i=1}^{N} \eta_i \mathbf{F}(A_i, \mathbf{s}, \mathbf{n}_i, \alpha_i, \mu_i),$$
$$\mathbf{M}_{SRP} = \sum_{i=1}^{N} \eta_i \mathbf{r}_i \times \mathbf{F}(A_i, \mathbf{s}, \mathbf{n}_i, \alpha_i, \mu_i),$$

The satellite structure

Element	Surface	Coefficients
space radio telescope	reflecting (MLI)	$lpha_1$, μ_1
spacecraft bus	reflecting (MLI)	$lpha_1$, μ_1
solar panels	absorbing	$\alpha_2 \; (\mu_2 = 1)$

specularity coefficient of solar panels is fixed to avoid strong correlation with α_2

Propagation

passing through an unloading:

$$(t_{i-0}, \mathbf{r}(t_{i-0}), \mathbf{v}(t_{i-0}), \ldots) \to (t_{i+0}, \mathbf{r}(t_{i+0}), \mathbf{v}(t_{i-0}) + \Delta \mathbf{v}_i, \ldots), (t_{i-0}, \mathbf{r}(t_{i-0}), \mathbf{v}(t_{i+0}) - \Delta \mathbf{v}_i, \ldots) \leftarrow (t_{i+0}, \mathbf{r}(t_{i+0}), \mathbf{v}(t_{i+0}), \ldots).$$

Gravity field	EGM96
Third bodies	DE-405
Tides	IERS 2003 convention
Direct SRP	parameterized with $lpha_1$, μ_1 and $lpha_2$
Earth radiation	18x9 constant coeff.

Motion of the center of mass is determined by :

$$\mathbf{X}_0(t_0), \alpha_1, \mu_1, \alpha_2, \Delta \mathbf{v}_1, \dots, \Delta \mathbf{v}_n$$

Observations

Radio

- Two-way range, two-way Doppler
- One-way Doppler

System	Band	D	Ď	\dot{D}_{1w}
Ussuriysk RT-70, "Klen-D"	С	\checkmark	\checkmark	
Ussuriysk RT-70, "Phobos"	Х			\checkmark
Bear Lakes RT-64, "Cobalt-M"	С	\checkmark	\checkmark	
Bear Lakes RT-64, "Cortex"	Х			\checkmark
Puschino RT-22	X, Ku			\checkmark
Green Bank, 140ft	X, Ku			\checkmark

Optical

CCD RA/Dec: ISON, ASC

Telemetry

- Observed impulses of unloadings $\Delta \mathbf{v}_i^0$.
- Observed torque M.

Perturbing torque observations

During constant attitude far from the Earth

$$\sum_{i=1}^{8} \mathbf{a}_{i} I_{i}(\Omega_{i}(t_{2}) - \Omega_{i}(t_{1})) = \mathbf{M}_{SRP}(\Lambda, \alpha_{1}, \mu_{1}, \alpha_{2})(t_{2} - t_{1})$$

Introduce the following difference of observed and computed torque

$$\boldsymbol{\zeta} = \sum_{i=1}^{8} \frac{\mathbf{a}_{i} I_{i} \left[\Omega_{i}(t_{2}) - \Omega_{i}(t_{1}) \right]}{t_{2} - t_{1}} - \mathbf{M}_{SRP}(\Lambda, \alpha_{1}, \mu_{1}, \alpha_{2}).$$

M. Zakhvatkin (KIAM)

Radioastron orbit determination

....

Orbit determination

Solve for the following parameters on the interval $[t_b, t_e]$

$$\mathbf{Q} = \{\mathbf{X}_{\mathbf{0}}(t_0), \alpha_1, \mu_1, \alpha_2, \Delta \mathbf{v}_1, \dots, \Delta \mathbf{v}_n\}.$$

using tracking data

$$oldsymbol{\Psi} = \{ \mathbf{D}, \dot{\mathbf{D}}, \dot{\mathbf{D}}_{1w}, oldsymbol{lpha}, oldsymbol{\delta} \}$$

and on-board observations

$$\{\mathbf{\Omega}(t), \Delta \mathbf{v}_1^0, \dots, \Delta \mathbf{v}_n^0\}$$

to minimize the functional

$$\Phi = (\boldsymbol{\Psi}_o - \boldsymbol{\Psi}_c)^{\mathsf{T}} \mathbf{P} (\boldsymbol{\Psi}_o - \boldsymbol{\Psi}_c) + \sum_{j=1}^{N} \boldsymbol{\zeta}_j^{\mathsf{T}} \mathbf{P}_j^{sp} \boldsymbol{\zeta}_j + \sum_{i=1}^{n} (\Delta \mathbf{v}_i^0 - \Delta \mathbf{v}_i)^{\mathsf{T}} \mathbf{P}_i (\Delta \mathbf{v}_i^0 - \Delta \mathbf{v}_i),$$

Orbit determination

Two intervals have been considered:

- 20-Feb-2013 10-Apr-2013 (Int. 1)
- 10-Apr-2013 30-May-2013 (Int. 2)

Several models were used :

- Simple SRP, No unloadings.
- Simple SRP, unloadings fixed on their nominal values $\Delta \mathbf{v}_i^0$
- SRP depends on three coefficients, unloadings fixed on their nominal values $\Delta \mathbf{v}_i^0$
- SRP depends on three coefficients, unloadings are solved for.

Parameters obtained on the Int. 1 will be used for orbit prediction on the Int. 2.

. . .

Radioastron D, \dot{D} , 20.02.13 – 10.04.13

M. Zakhvatkin (KIAM)

Radioastron orbit determination

ISSFD - May 9, 2014 11 / 24

Radioastron (α , δ), 20.02.13 – 10.04.13

Radioastron $\{\Delta \mathbf{v}_i^0 - \Delta \mathbf{v}_i\}$, 20.02.13 – 10.04.13

Radioastron D, \dot{D} , 10.04.13 – 30.05.13

M. Zakhvatkin (KIAM)

Radioastron orbit determination

ISSFD - May 9, 2014 14 / 24

Radioastron (α , δ), 10.04.13 – 30.05.13

111

Radioastron $\{\Delta \mathbf{v}_i^0 - \mathbf{v}_i\}$, 10.04.13 – 30.05.13

Orbit determination results

Dimensionless standard deviation: 20.02.13 - 10.04.13 (Int. 1) and 10.04.13 - 30.05.13 (Int. 2)

N⁰	SRP model	Unloadings	σ_1	σ_2	Δr , km	Δv , mm/s
1	Simple, 1 coeff.	Not considered	12.43677	9.18588	71.71	288.1
2	Simple, 1 coeff.	Nominal	4.72914	6.78832	36.76	113.3
3	Proposed, 3 coeff.	Nominal	1.20896	0.63767	7.57	8.9
4	Proposed, 3 coeff.	Solved for	0.28198	0.24907	0.21	2.3

Estimated solar radiation pressure coefficients

Parameter	Int. 1	Int. 2
α_1	0.754	0.791
μ_1	0.087	0.089
α_2	0.063	0.102

Orbit prediction

Necessary elements

• Attitude forecast (observation schedule + service attitude)

 $(\Lambda_1, t_1, t_1'), (\Lambda_2, t_2, t_2'), \dots (\Lambda_n, t_n, t_n').$

With estimated SRP coefficients determines corresponding perturbation and accumulation of angular momentum by the reaction wheels

Conversion of accumulated angular momentum to impulses of unloadings

$$\mathbf{K}(t) \xrightarrow{\Delta \mathbf{v}(t)} \mathbf{K}(t+\delta t)$$

• Prediction of times of occurrence of unloadings.

Angular momentum to unloading

Angular momentum changing during an unloading can be described as follows:

$$\sum_{i=1}^{8} \mathbf{a}_{\mathbf{i}} I_i \Omega_i(t_u) = \sum_{j=1}^{4} \mathbf{r}_{\mathbf{j}} \times \mathbf{e}_{\mathbf{j}} p_j,$$

• an unloading takes relatively short time,

- reaction wheels stop,
- the satellite is not rotating.

where $p_j \geq 0$ are the propellant momenta. The equation can be resolved with respect to $\{p_j\}$ with additional condition:

$$\sum_j p_j \to \min$$

An impulse of an unloading

$$\Delta \mathbf{v}^*(\mathbf{K}) = -\frac{\sum_i p_i \mathbf{e}_i}{M}, \qquad \Delta \mathbf{v} = \Delta \mathbf{v}(\Delta \mathbf{v}^*).$$

Prediction of the time of next unloading

Range of permissible values of the angular momentum of reaction wheels

۲ An unloading should be conducted if accumulated angular momentum is too high $\mathbf{K}(t) \notin U$

$$U = \{ \mathbf{K} = \sum_{i=1}^{N} \mathbf{a}_{i} I_{i} \Omega_{i} : |\Omega_{i}| \le \Omega_{max}, i = \overline{1, N} \}.$$

Unloadings can be conducted on daily basis in the ۰ same time

10 impulse value, mm/s 8 6 4 05:00:00 10:00:00 15:00:00 20:00:00 Time, UTC+3:00 M. Zakhvatkin (KIAM) Radioastron orbit determination ISSFD - May 9, 2014 20 / 24

Histogram of the Radioastron unloadings

Prediction of unloadings on the Int. 2 (10-Apr-2013 – 30-May-2013)

Summary

- Adjustable Radioastron SRP model was developed and tested.
- Parameters of the SRP model was estimated by using both motion of the center of mass and motion around the center of mass.
- Determined orbits are successfully used for correlation of the Radioastron observations.
- An unloading prediction approach, important for future Sun-Earth L_2 missions (Spectr-R, Millimetron) based on the same platform, was tested on the Radioastron data.

. . .

Thank you for your attention!